Mathematical modeling of irreversible electroporation for treatment planning.
نویسندگان
چکیده
Irreversible Electroporation (IRE) is a new drug-free method to ablate undesirable tissue of particular use in cancer therapy. IRE achieves cell death within the targeted tissue through a series of electric pulses that elevate the transmembrane potentials to an extent that permanently damages the lipid bilayers throughout the treated region. Although the IRE procedure is easy to perform, treatment planning is complicated by the fact that the electric field distribution within the tissue, the greatest single factor controlling the extents of IRE, depends non-trivially on the electrode configuration, pulse parameters and any tissue heterogeneities. To address this difficulty, we instruct on how to properly model IRE and discuss the benefit of modeling in designing treatment protocols. The necessary theoretical basis is introduced and discussed through the detailed analysis of two classic dual-electrode configurations from electrochemotherapy: coaxial disk electrodes and parallel needle electrodes. Dimensionless figures for these cases are also provided that allow cell constants, treated areas, and the details of heating to be determined for a wide range of conditions, for uniform tissues, simply by plugging in the appropriate physical property values and pulse parameters such as electrode spacing, size, and pulse amplitude. Complexities, such as heterogeneous tissues and changes in conductivity due to electroporation, are also discussed. The synthesis of these details can be used directly by surgeons in treatment planning. Irreversible electroporation is a promising new technique to treat cancer in a targeted manner without the use of drugs; however, it does require a detailed understanding of how electric currents flow within biological tissues. By providing the understanding and tools necessary to design an IRE protocol, this study seeks to facilitate the translation of this new and exciting cancer therapy into clinical practice.
منابع مشابه
A Multi Objective Genetic Algorithm (MOGA) for Optimizing Thermal and Electrical Distribution in Tumor Ablation by Irreversible Electroporation
Background: Irreversible electroporation (IRE) is a novel tumor ablation technique. IRE is associated with high electrical fields and is often reported in conjunction with thermal damage caused by Joule heating. For good response to surgery it is crucial to produce minimum thermal damage in both tumoral and healthy tissues named Non-Thermal Irreversible Electroporation(NTIRE). Non-thermal irrev...
متن کاملPredicting electroporation of cells in an inhomogeneous electric field based on mathematical modeling and experimental CHO-cell permeabilization to propidium iodide determination.
High voltage electric pulses cause electroporation of the cell membrane. Consequently, flow of the molecules across the membrane increases. In our study we investigated possibility to predict the percentage of the electroporated cells in an inhomogeneous electric field on the basis of the experimental results obtained when cells were exposed to a homogeneous electric field. We compared and eval...
متن کاملA statistical model for multidimensional irreversible electroporation cell death in tissue
BACKGROUND Irreversible electroporation (IRE) is a minimally invasive tissue ablation technique which utilizes electric pulses delivered by electrodes to a targeted area of tissue to produce high amplitude electric fields, thus inducing irreversible damage to the cell membrane lipid bilayer. An important application of this technique is for cancer tissue ablation. Mathematical modelling is cons...
متن کاملTreatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation.
In recent years, cancer electrochemotherapy (ECT), gene electrotransfer for gene therapy and DNA vaccination (GET) and tissue ablation with irreversible electroporation (IRE) have all entered clinical practice. We present a method for a personalized treatment planning procedure for ECT, GET and IRE, based on medical image analysis, numerical modelling of electroporation and optimization with th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Technology in cancer research & treatment
دوره 6 4 شماره
صفحات -
تاریخ انتشار 2007